Algebraic geometry 1

Exercise Sheet 6

PD Dr. Maksim Zhykhovich

Winter Semester 2025, 28.11.2025

Exercise 1. Let $f \in K[X_1,...,X_n]$ be a polynomial of degree d. The homonization of f is defined as the following homogeneous polynomial

$$f^h := X_0^d f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right) \in K[X_0, X_1, \dots, X_n].$$

For an ideal $J \in K[X_1, \ldots, X_n]$ we denote by J^h the ideal generated by f^h for all non-zero $f \in J$.

Let $X = V^a(J) \subset \mathbb{A}^n$ be an affine algebraic set. We can identify \mathbb{A}^n with the open subset $U_0 := \{ [x_0 : x_1 : \cdots : x_n] \mid x_0 \neq 0 \} \subset \mathbb{P}^n$ by the bijective map

$$\mathbb{A}^n \to U_0, \quad (x_1, \dots, x_n) \mapsto [1 : x_1 : \dots : x_n].$$

Consider now X as a subset of \mathbb{P}^n (that is $X \subset \mathbb{A}^n \subset \mathbb{P}^n$).

- (1) Show that $\overline{X} = V^p(J^h)$ (with respect to the Zariski topology on \mathbb{P}^n).
- (2) Let $f \in K[X_1, ..., X_n]$ and $X = V^a(f)$. Deduce from (1) that $\overline{X} = V^p(f^h)$.

Exercise 2. Let $Y := V^p(Y^2 - XZ) \subset \mathbb{P}^2$.

(1) Show that the map

$$\varphi:\mathbb{P}^1\to Y,\quad [X_0,X_1]\mapsto [X_0^2,X_0X_1,X_1^2]\,,$$

is regular.

(2) Show that φ is an isomorphism (that is, φ is bijective and the inverse map is also regular).

Exercise 3. Let $Y_1 := V^a(X_2 - X_1^2)$ and $Y_2 := V^a(X_1X_2 - 1)$ be two affine algebraic varieties in \mathbb{A}^2 .

Consider their closures $\overline{Y_1}$ and $\overline{Y_2}$ in \mathbb{P}^2 (as explained in Exercise 1). Show that $\overline{Y_1} \simeq \overline{Y_2}$ but Y_1 and Y_2 are not isomorphic as affine varieties.

Exercise 4. Show that the only regular functions on \mathbb{P}^n are the constant functions.